.MCAD 304020000 1 74 4084 0 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 0 3 .CMD PLOTFORMAT 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 NO-TRACE-STRING 0 2 1 0 1 1 NO-TRACE-STRING 0 3 2 0 1 1 NO-TRACE-STRING 0 4 3 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 2 5 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 0 1 1 21 15 0 1 3 .CMD FORMAT rd=d ct=10 im=i et=3 zt=15 pr=3 mass length time charge temperature tr=0 vm=0 .CMD SET ORIGIN 0 .CMD SET TOL 0.001000000000000 .CMD SET PRNCOLWIDTH 8 .CMD SET PRNPRECISION 4 .CMD PRINT_SETUP 1.200000 0.989583 1.200000 1.200000 0 .CMD HEADER_FOOTER 1 1 *empty* *empty* *empty* 0 1 *empty* *empty* *empty* .CMD HEADER_FOOTER_FONT fontID=14 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD HEADER_FOOTER_FONT fontID=15 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFAULT_TEXT_PARPROPS 0 0 0 .CMD DEFINE_FONTSTYLE_NAME fontID=0 name=Variables .CMD DEFINE_FONTSTYLE_NAME fontID=1 name=Constants .CMD DEFINE_FONTSTYLE_NAME fontID=2 name=Text .CMD DEFINE_FONTSTYLE_NAME fontID=4 name=User^1 .CMD DEFINE_FONTSTYLE_NAME fontID=5 name=User^2 .CMD DEFINE_FONTSTYLE_NAME fontID=6 name=User^3 .CMD DEFINE_FONTSTYLE_NAME fontID=7 name=User^4 .CMD DEFINE_FONTSTYLE_NAME fontID=8 name=User^5 .CMD DEFINE_FONTSTYLE_NAME fontID=9 name=User^6 .CMD DEFINE_FONTSTYLE_NAME fontID=10 name=User^7 .CMD DEFINE_FONTSTYLE fontID=0 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=1 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=2 family=Arial points=10 bold=1 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=4 family=Arial points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=5 family=Courier^New points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=6 family=System points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=7 family=Script points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=8 family=Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=9 family=Modern points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD DEFINE_FONTSTYLE fontID=10 family=Times^New^Roman points=10 bold=0 italic=0 underline=0 colrid=-1 .CMD UNITS U=1 .CMD DIMENSIONS_ANALYSIS 0 0 .CMD COLORTAB_ENTRY 0 0 0 .CMD COLORTAB_ENTRY 128 0 0 .CMD COLORTAB_ENTRY 0 128 0 .CMD COLORTAB_ENTRY 128 128 0 .CMD COLORTAB_ENTRY 0 0 128 .CMD COLORTAB_ENTRY 128 0 128 .CMD COLORTAB_ENTRY 0 128 128 .CMD COLORTAB_ENTRY 128 128 128 .CMD COLORTAB_ENTRY 192 192 192 .CMD COLORTAB_ENTRY 255 0 0 .CMD COLORTAB_ENTRY 0 255 0 .CMD COLORTAB_ENTRY 255 255 0 .CMD COLORTAB_ENTRY 0 0 255 .CMD COLORTAB_ENTRY 255 0 255 .CMD COLORTAB_ENTRY 0 255 255 .CMD COLORTAB_ENTRY 255 255 255 .CMD COLORTAB_ENTRY 10 36 106 .TXT 2 5 4084 0 0 Cg a66.875000,66.875000,63 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2\fs24 \i\ul LNA design steps using S-parameters (Fabrizio D'Angelo IZ0MVO)}} .TXT 4 -4 3292 0 0 Cg a72.000000,72.000000,140 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green0\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2\ul INTRODUCTION}{\cf2 \par this document is an example of a Low Noise Amplifier design using noise and S-parameters data supplied in the device datasheet.}} .TXT 8 0 3293 0 0 Cg a73.000000,73.000000,272 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green0\blue128;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2\ul INPUT DATA}{\cf2 \par Device selected is Eudyna (formerly Fujitsu) GaAsFet FHC40LG (low noise HEMT), the working frequency is centered at 2.4GHz, Z0=50}{\cf2\f1 W}{\cf2 , Temp=25C}{ \cf2 and bias is Vds=2V Ids=10mA } (optimized for lowest NF).\par The following parameters are extracted from component datasheet.} .TXT 12 0 2871 0 0 Cg a69.000000,69.000000,77 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green128\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2 Enter Sparameters data relative to the frequency of interest (in polar form):} } .EQN 3 0 2872 0 0 {0:S11mag}NAME:0.92 .EQN 0 17 2873 0 0 {0:S22mag}NAME:0.5142 .EQN 0 15 2874 0 0 {0:S12mag}NAME:0.0378 .EQN 0 17 2875 0 0 {0:S21mag}NAME:5.261 .EQN 3 -49 2876 0 0 {0:S11ang}NAME:-48.18 .EQN 0 17 2877 0 0 {0:S22ang}NAME:-41.48 .EQN 0 15 2878 0 0 {0:S12ang}NAME:56.76 .EQN 0 17 2879 0 0 {0:S21ang}NAME:133.46 .TXT 4 -49 2880 0 0 Cg a73.000000,73.000000,170 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green128\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2 Enter noise parameters ( NFmin=}{\cf2 minimum noise figure}{\cf2 , rn=}{\cf2 equivalent noise resistance}{\cf2 and }{ \cf2\f1 G}{\cf2 opt=}{\cf2 optimum source reflection coefficient}{\cf2 ) relative to the frequency of interest:}} .EQN 5 0 2881 0 0 {0:\Gopt_mag}NAME:0.862 .EQN 0 17 2882 0 0 {0:NFmin_dB}NAME:0.284 .EQN 0 20 2883 0 0 {0:rn}NAME:0.188 .EQN 3 -37 2884 0 0 {0:\Gopt_ang}NAME:36.2 .TXT 3 0 2885 0 0 Cg a70.000000,70.000000,217 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green128\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2 Choose desired gamma source (reflection coefficient seen by the active device at its input) i.e. for minimum noise figure design this parameter is the supplied gamma opt (source impedance for best noise performance):}} .EQN 7 0 2886 0 0 {0:\Gsmag}NAME:{0:\Gopt_mag}NAME .EQN 0 19 2887 0 0 {0:\Gsang}NAME:{0:\Gopt_ang}NAME .TXT 9 -19 2384 0 0 Cg a73.000000,73.000000,35 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Computing the minimum noise factor:} .EQN 0 32 2385 0 0 {0:NFmin}NAME:(10)^(({0:NFmin_dB}NAME)/(10)) .EQN 0 20 2386 0 0 {0:NFmin}NAME={0}?_n_u_l_l_ .TXT 4 -52 2387 0 0 Cg a65.000000,65.000000,45 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Converting gamma optimum to rectangular form:} .EQN 3 0 2388 0 0 {0:\GoptRe}NAME:{0:\Gopt_mag}NAME*{0:cos}NAME({0:\Gopt_ang}NAME*{0:deg}NAME) .EQN 3 0 2389 0 0 {0:\Goptim}NAME:{0:\Gopt_mag}NAME*{0:sin}NAME({0:\Gopt_ang}NAME*{0:deg}NAME) .EQN 0 32 2390 0 0 {0:\Gopt}NAME:{0:\GoptRe}NAME+{0:\Goptim}NAME*1j .EQN 0 23 2391 0 0 {0:\Gopt}NAME={0}?_n_u_l_l_ .TXT 4 -55 2392 0 0 Cg a65.000000,65.000000,44 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Converting gamma source to rectangular form:} .EQN 3 0 2393 0 0 {0:\GsRe}NAME:{0:\Gsmag}NAME*{0:cos}NAME({0:\Gsang}NAME*{0:deg}NAME) .EQN 3 0 2394 0 0 {0:\Gsim}NAME:{0:\Gsmag}NAME*{0:sin}NAME({0:\Gsang}NAME*{0:deg}NAME) .EQN 0 29 2395 0 0 {0:\Gs}NAME:{0:\GsRe}NAME+{0:\Gsim}NAME*1j .EQN 0 26 2396 0 0 {0:\Gs}NAME={0}?_n_u_l_l_ .TXT 4 -55 2397 0 0 Cg a65.000000,65.000000,44 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Converting s-parameters to rectangular form:} .EQN 3 0 2398 0 0 {0:S22Re}NAME:{0:S22mag}NAME*{0:cos}NAME({0:S22ang}NAME*{0:deg}NAME) .EQN 0 30 2399 0 0 {0:S11Re}NAME:{0:S11mag}NAME*{0:cos}NAME({0:S11ang}NAME*{0:deg}NAME) .EQN 3 -30 2400 0 0 {0:S22im}NAME:{0:S22mag}NAME*{0:sin}NAME({0:S22ang}NAME*{0:deg}NAME) .EQN 0 30 2401 0 0 {0:S11im}NAME:{0:S11mag}NAME*{0:sin}NAME({0:S11ang}NAME*{0:deg}NAME) .EQN 3 -30 2402 0 0 {0:S22}NAME:{0:S22Re}NAME+{0:S22im}NAME*1j .EQN 0 30 2403 0 0 {0:S11}NAME:{0:S11Re}NAME+{0:S11im}NAME*1j .EQN 3 -30 2404 0 0 {0:S12Re}NAME:{0:S12mag}NAME*{0:cos}NAME({0:S12ang}NAME*{0:deg}NAME) .EQN 0 30 2405 0 0 {0:S21Re}NAME:{0:S21mag}NAME*{0:cos}NAME({0:S21ang}NAME*{0:deg}NAME) .EQN 3 -30 2406 0 0 {0:S12im}NAME:{0:S12mag}NAME*{0:sin}NAME({0:S12ang}NAME*{0:deg}NAME) .EQN 0 30 2407 0 0 {0:S21im}NAME:{0:S21mag}NAME*{0:sin}NAME({0:S21ang}NAME*{0:deg}NAME) .EQN 3 -30 2408 0 0 {0:S12}NAME:{0:S12Re}NAME+{0:S12im}NAME*1j .EQN 0 30 2409 0 0 {0:S21}NAME:{0:S21Re}NAME+{0:S21im}NAME*1j .EQN 3 -30 2410 0 0 {0:S11}NAME={0}?_n_u_l_l_ .EQN 0 17 2411 0 0 {0:S22}NAME={0}?_n_u_l_l_ .EQN 3 -17 2412 0 0 {0:S12}NAME={0}?_n_u_l_l_ .EQN 0 17 2413 0 0 {0:S21}NAME={0}?_n_u_l_l_ .TXT 4 -17 2414 0 0 Cg a73.000000,73.000000,63 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard Computing "{\f1 D}" the determinant of the two-port network s-matrix:} .EQN 3 0 2415 0 0 {0:\D}NAME:{0:S11}NAME*{0:S22}NAME-{0:S12}NAME*{0:S21}NAME .EQN 0 26 2416 0 0 {0:\D}NAME={0}?_n_u_l_l_ .TXT 14 -26 3294 0 0 Cg a69.000000,69.000000,72 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul SMITH CHART CONSTRUCTION} \par ("compact version", see file: smith_chart.MCD)} .TXT 7 0 3295 0 0 Cg a69.000000,69.000000,33 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Circles with constant resistance:} .EQN 4 3 3296 0 0 {0:x0}NAME({0:t}NAME):{0:cos}NAME({0:t}NAME) .EQN 0 27 3297 0 0 {0:y0}NAME({0:t}NAME):{0:sin}NAME({0:t}NAME) .EQN 4 -27 3298 0 0 {0:x2}NAME({0:t}NAME):(1)/(1+1)*{0:cos}NAME({0:t}NAME)+(1)/(1+1) .EQN 0 27 3299 0 0 {0:y2}NAME({0:t}NAME):(1)/(1+1)*{0:sin}NAME({0:t}NAME) .TXT 6 -30 3300 0 0 Cg a69.000000,69.000000,32 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Circles with constant reactance:} .EQN 5 2 3301 0 0 {0:x6}NAME({0:t}NAME):(1)/(1.6)*{0:cos}NAME({0:t}NAME)+1 .EQN 0 27 3302 0 0 {0:y6}NAME({0:t}NAME):(1)/(1.6)*{0:sin}NAME({0:t}NAME)+(1)/(1.6) .EQN 5 -27 3303 0 0 {0:x7}NAME({0:t}NAME):(1)/(1.6)*{0:cos}NAME({0:t}NAME)+1 .EQN 0 27 3304 0 0 {0:y7}NAME({0:t}NAME):(1)/(1.6)*{0:sin}NAME({0:t}NAME)+(1)/(-1.6) .EQN 5 -27 3305 0 0 {0:x10}NAME({0:t}NAME):(1)/(0.5)*{0:cos}NAME({0:t}NAME)+1 .EQN 0 27 3306 0 0 {0:y10}NAME({0:t}NAME):(1)/(0.5)*{0:sin}NAME({0:t}NAME)+(1)/(0.5) .EQN 5 -27 3307 0 0 {0:x11}NAME({0:t}NAME):(1)/(0.5)*{0:cos}NAME({0:t}NAME)+1 .EQN 0 27 3308 0 0 {0:y11}NAME({0:t}NAME):(1)/(0.5)*{0:sin}NAME({0:t}NAME)+(1)/(-0.5) .EQN 7 -27 3309 0 0 {0:t}NAME:0,0.1;2*{0:\p}NAME+.1 .EQN 2 0 3310 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME)@1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME),{0:x6}NAME({0:t}NAME), {0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME) 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 3 6 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 31 27 12 0 2 .TXT 43 -2 1467 0 0 Cg a70.000000,70.000000,12 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul 1- STABILITY}} .TXT 3 0 1468 0 0 Cg a70.000000,70.000000,153 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard The risk of a oscillation of the selected device is evaluated, at the frequency point of interest, {\cf2\ul calculating the Rollett (K) or the }{\cf2\f1\ul m}{\cf2\ul }{\cf2\ul stability factor}{ \ul :}} .EQN 7 5 2888 0 0 {0:K}NAME:(1+((|({0:\D}NAME)))^(2)-((|({0:S11}NAME)))^(2)-((|({0:S22}NAME)))^(2))/(2*|({0:S21}NAME)*|({0:S12}NAME)) .EQN 0 54 2889 0 0 {0:K}NAME={0}?_n_u_l_l_ .EQN 7 -54 2891 0 0 {0:\m}NAME:(1-((|({0:S22}NAME)))^(2))/(|({0:S11}NAME-{0:\D}NAME*({0:S22}NAME)])+|({0:S12}NAME*{0:S21}NAME)) .EQN 1 54 2892 0 0 {0:\m}NAME={0}?_n_u_l_l_ .TXT 5 -59 2894 0 0 Cg a70.000000,70.000000,156 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard K<1, so the device could be potentially unstable (i.e. can oscillate with some source and load impedance combinations).\par {\f1 m} <1 confirm the risk of instability.} .TXT 8 0 2895 0 0 Cg a73.000000,73.000000,142 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Plotting input and output stability circle to avoid critical impedance values. { \cf2\ul Zsource and Zload must be chosen outside the instability areas.}} .TXT 6 0 2896 0 0 Cg a69.000000,69.000000,56 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Center location and radius of input stability circle is:} .EQN 6 5 2928 0 0 {0:Cs}NAME:((({0:S11}NAME-{0:\D}NAME*({0:S22}NAME)]))])/(((|({0:S11}NAME)))^(2)-((|({0:\D}NAME)))^(2)) .EQN 0 21 2929 0 0 {0:Rs}NAME:|(({0:S12}NAME*{0:S21}NAME)/(((|({0:S11}NAME)))^(2)-((|({0:\D}NAME)))^(2))) .EQN 0 27 2927 0 0 {0:Cs}NAME={0}?_n_u_l_l_ .EQN 2 0 2930 0 0 {0:Rs}NAME={0}?_n_u_l_l_ .TXT 3 -53 2931 0 0 Cg a69.000000,69.000000,57 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Center location and radius of output stability circle is:} .EQN 6 5 2938 0 0 {0:Co}NAME:((({0:S22}NAME-{0:\D}NAME*({0:S11}NAME)]))])/(((|({0:S22}NAME)))^(2)-((|({0:\D}NAME)))^(2)) .EQN 0 21 2939 0 0 {0:Ro}NAME:|(({0:S12}NAME*{0:S21}NAME)/(((|({0:S22}NAME)))^(2)-((|({0:\D}NAME)))^(2))) .EQN 0 27 2937 0 0 {0:Co}NAME={0}?_n_u_l_l_ .EQN 2 0 2940 0 0 {0:Ro}NAME={0}?_n_u_l_l_ .TXT 4 -53 2941 0 0 Cg a69.000000,69.000000,63 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Plotting input and output stability circles on the Smith Chart:} .EQN 3 2 2947 0 0 {0:xa}NAME({0:t}NAME):{0:Rs}NAME*{0:cos}NAME({0:t}NAME)+{0:Re}NAME({0:Cs}NAME) .EQN 0 25 2948 0 0 {0:ya}NAME({0:t}NAME):{0:Rs}NAME*{0:sin}NAME({0:t}NAME)+{0:Im}NAME({0:Cs}NAME) .EQN 3 -25 2949 0 0 {0:xb}NAME({0:t}NAME):{0:Ro}NAME*{0:cos}NAME({0:t}NAME)+{0:Re}NAME({0:Co}NAME) .EQN 0 25 2950 0 0 {0:yb}NAME({0:t}NAME):{0:Ro}NAME*{0:sin}NAME({0:t}NAME)+{0:Im}NAME({0:Co}NAME) .EQN 3 -25 2957 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:ya}NAME({0:t}NAME),{0:yb}NAME({0:t}NAME)@1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME), {0:x2}NAME({0:t}NAME),{0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xa}NAME({0:t}NAME),{0:xb}NAME({0:t}NAME) 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 2 1 0 0 1 1 NO-TRACE-STRING 5 1 3 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 37 32 12 0 2 .TXT 6 43 2958 0 0 Cg a28.000000,28.000000,56 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2\ul RED= INPUT STAB. CIRCLE\par (Zsource must be chosen outside)}} .TXT 6 0 2959 0 0 Cg a28.000000,28.000000,56 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue255;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2\ul MAGENTA= OUT STAB. CIRCLE\par (Zload must be chosen outside)}} .TXT 31 -45 2686 0 0 Cg a73.000000,73.000000,33 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul 2- MAXIMUM STABLE GAIN REALIZABLE}} .TXT 3 0 2687 0 0 Cg a73.000000,73.000000,189 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Since the selected device is potential unstable (K less or equal to 1) could be useful to calculate {\cf2 MSG (Maximum Stable Gain) }(i.e. the highest gain achievable using practical termination).} .EQN 8 6 3041 0 0 {0:MSG}NAME:(|({0:S21}NAME))/(|({0:S12}NAME)) .EQN 0 47 3042 0 0 {0:MSG}NAME={0}?_n_u_l_l_ .EQN 5 -47 3043 0 0 {0:MSGdB}NAME:10*{0:log}NAME({0:MSG}NAME) .EQN 0 47 3044 0 0 {0:MSGdB}NAME={0}?_n_u_l_l_ .TXT 5 -53 4075 0 0 Cg a73.000000,73.000000,30 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul 3- AMPLIFIER NOISE PERFORMANCE}} .TXT 4 0 4076 0 0 Cg a73.000000,73.000000,83 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard The noise factor (at a specified frequency, temperature and bias) is calculated as:} .EQN 5 6 4077 0 0 {0:NF}NAME:{0:NFmin}NAME+(4*{0:rn}NAME*((|({0:\Gs}NAME-{0:\Gopt}NAME)))^(2))/((1-((|({0:\Gs}NAME)))^(2))*((|(1+{0:\Gopt}NAME)))^(2)) .EQN 0 45 4078 0 0 {0:NF}NAME={0}?_n_u_l_l_ .EQN 5 -45 4079 0 0 {0:NFdB}NAME:10*{0:log}NAME({0:NF}NAME) .EQN 0 45 4080 0 0 {0:NFdB}NAME={0}?_n_u_l_l_ .TXT 4 -51 4081 0 0 Cg a73.000000,73.000000,371 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard In this case we set {\f1 G}source={\f1 G}opt, to design for best noise performance, so NF equals to device NFmin. \par From NF expression comes out the constant noise circle equation for each NF value.\par Entering a higher NF value (than NFmin) permit to have a larger range of {\f1 G}source impedance (with the same NF value) to choose from, therefore varying other parameters (such as gain). } .TXT 13 0 3869 0 0 Cg a72.000000,72.000000,43 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green128\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2 Enter desired constant \par noise circle in dB:}} .EQN 2 21 3870 0 0 {0:NFdB}NAME:0.32 .EQN 0 16 3871 0 0 {0:NF}NAME:(10)^(({0:NFdB}NAME)/(10)) .EQN 0 18 3872 0 0 {0:NF}NAME={0}?_n_u_l_l_ .TXT 5 -55 3873 0 0 Cg a73.000000,73.000000,41 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard defining an intermediate noise parameter:} .EQN 0 35 3874 0 0 {0:NC}NAME:(({0:NF}NAME-{0:NFmin}NAME)/(4*{0:rn}NAME)*((|(1+{0:\Gopt}NAME)))^(2)) .TXT 5 -35 3875 0 0 Cg a73.000000,73.000000,48 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard center and radius of constant noise circle are: } .EQN 4 8 3876 0 0 {0:Cn}NAME:({0:\Gopt}NAME)/((1+{0:NC}NAME)) .EQN 1 21 3877 0 0 {0:Rn}NAME:(1)/(1+{0:NC}NAME)*\((({0:NC}NAME))^(2)+{0:NC}NAME*(1-((|({0:\Gopt}NAME)))^(2))) .TXT 4 -29 3878 0 0 Cg a69.000000,69.000000,50 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Plotting selected noise circle on the Smith Chart:} .EQN 3 4 3879 0 0 {0:yn}NAME({0:t}NAME):{0:Rn}NAME*{0:sin}NAME({0:t}NAME)+{0:Im}NAME({0:Cn}NAME) .EQN 0 25 3880 0 0 {0:xn}NAME({0:t}NAME):{0:Rn}NAME*{0:cos}NAME({0:t}NAME)+{0:Re}NAME({0:Cn}NAME) .EQN 1 -25 3881 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:yn}NAME({0:t}NAME)@1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME), {0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xn}NAME({0:t}NAME) 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 0 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 33 29 12 0 2 .TXT 35 -4 2981 0 0 Cg a69.000000,69.000000,31 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul 4- COMPUTING THE AVAILABLE GAIN}} .TXT 3 0 2982 0 0 Cg a69.000000,69.000000,277 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard The power gain definition called "available gain" (that comes out from Transducer Gain expression) is well suitable for LNA design since {\f1 G}source is set equal to {\f1 G}opt (source impedance for optimized noise performance) and {\f1 G}load, of consequence, is matched to the required {\f1 G}out*.} .TXT 10 0 3882 0 0 Cg a73.000000,73.000000,164 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2 Knowing }{\cf2\f1 G}{\cf2 s}{\cf2 ource (=}{ \cf2\f1 G}{\cf2 o}{\cf2 pt) the corresponding }{\cf2\f1 G}{\cf2 o}{ \cf2 ut }{\cf2 is first computed }(reflection coefficient seen at the network output with the input attached to Zsource impedance): } .EQN 6 3 3883 0 0 {0:\Gout}NAME:{0:S22}NAME+{0:S12}NAME*{0:S21}NAME*({0:\Gs}NAME)/((1-{0:S11}NAME*{0:\Gs}NAME)) .EQN 0 47 3884 0 0 {0:\Gout}NAME={0}?_n_u_l_l_ .TXT 5 -50 3894 0 0 Cg a73.000000,73.000000,93 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2 Then }{\cf2\f1 G}{\cf2 load}{\cf2 is set equal to the complex conjugate of the value of }{\cf2\f1 G}{\cf2 o}{ \cf2 ut (i.e. it is matched):} } .EQN 4 3 3895 0 0 {0:\Gload}NAME:({0:\Gout}NAME)] .EQN 0 47 3896 0 0 {0:\Gload}NAME={0}?_n_u_l_l_ .TXT 5 -50 3897 0 0 Cg a69.000000,69.000000,31 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Transducer Gain definition was:} .EQN 5 5 3898 0 0 {0:GT}NAME:(1-((|({0:\Gs}NAME)))^(2))/(((|(1-{0:S11}NAME*{0:\Gs}NAME)))^(2))*((|({0:S21}NAME)))^(2)*(1-((|({0:\Gload}NAME)))^(2))/(((|(1-{0:\Gout}NAME*{0:\Gload}NAME)))^(2)) .EQN 0 54 3899 0 0 {0:GT}NAME={0}?_n_u_l_l_ .TXT 6 -59 3900 0 0 Cg a69.000000,69.000000,59 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard If we put {\f1 G}load={\f1 G}out* we get the {\cf2 Available gain expression}:} .EQN 5 5 3901 0 0 {0:GA}NAME:(1-((|({0:\Gs}NAME)))^(2))/(((|(1-{0:S11}NAME*{0:\Gs}NAME)))^(2))*((|({0:S21}NAME)))^(2)*(1)/(1-((|({0:\Gout}NAME)))^(2)) .EQN 0 54 3902 0 0 {0:GA}NAME={0}?_n_u_l_l_ .TXT 6 -59 3903 0 0 Cg a68.000000,68.000000,153 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard and finally substituting the previously calculated { \f1 G}out we get the {\cf2 Available Gain definition as only a function of }{\cf2\f1 G}{\cf2 s} (and s-parameters of the two port):} .EQN 8 4 3904 0 0 {0:GA}NAME:(((|({0:S21}NAME)))^(2)*(1-((|({0:\Gs}NAME)))^(2)))/((1-((|(({0:S22}NAME-{0:\D}NAME*{0:\Gs}NAME)/(1-{0:S11}NAME*{0:\Gs}NAME))))^(2))*((|(1-{0:S11}NAME*{0:\Gs}NAME)))^(2)) .EQN 0 53 3905 0 0 {0:GA}NAME={0}?_n_u_l_l_ .EQN 9 -53 3906 0 0 {0:GAdB}NAME:10*{0:log}NAME({0:GA}NAME) .EQN 0 53 3907 0 0 {0:GAdB}NAME={0}?_n_u_l_l_ .TXT 4 -57 3924 0 0 Cg a68.000000,68.000000,276 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard Solving for {\f1 G}s yields an equation of a circle (i.e. a locus of Zs points leading to the same specific gain GA) for each value of GA.\par GA previously calculated refers to {\f1 G}s={\f1 G} opt condition. Here following it is possible to enter a different GA value and plot the relative circle.} .TXT 11 0 3964 0 0 Cg a72.000000,72.000000,40 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green128\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2 Enter here a specific GA value to plot:} } .EQN 0 34 3965 0 0 {0:GAdB}NAME:20.88 .EQN 0 13 3966 0 0 {0:GA}NAME:(10)^(({0:GAdB}NAME)/(10)) .EQN 2 -13 3967 0 0 {0:GA}NAME={0}?_n_u_l_l_ .TXT 4 -34 3968 0 0 Cg a73.000000,73.000000,35 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Radius of available gain circle is:} .EQN 10 6 3969 0 0 {0:Ra}NAME:(((1-2*{0:K}NAME*|({0:S12}NAME*{0:S21}NAME)*({0:GA}NAME)/(((|({0:S21}NAME)))^(2))+((|({0:S12}NAME*{0:S21}NAME)))^(2)*((({0:GA}NAME)/(((|({0:S21}NAME)))^(2))))^(2)))^((1)/(2)))/(|(1+({0:GA}NAME)/(((|({0:S21}NAME)))^(2))*(((|({0:S11}NAME)))^(2)-( (|({0:\D}NAME)))^(2)))) .EQN 0 57 3970 0 0 {0:Ra}NAME={0}?_n_u_l_l_ .TXT 8 -63 3971 0 0 Cg a73.000000,73.000000,18 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard and the center is:} .EQN 8 6 3972 0 0 {0:Ca}NAME:(({0:GA}NAME)/(((|({0:S21}NAME)))^(2))*(({0:S11}NAME-{0:\D}NAME*({0:S22}NAME)]))])/(1+({0:GA}NAME)/(((|({0:S21}NAME)))^(2))*(((|({0:S11}NAME)))^(2)-((|({0:\D}NAME)))^(2))) .EQN 0 51 3973 0 0 {0:Ca}NAME={0}?_n_u_l_l_ .TXT 9 -57 3974 0 0 Cg a69.000000,69.000000,59 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Plotting selected available gain circle on the Smith Chart:} .EQN 3 2 3975 0 0 {0:xc}NAME({0:t}NAME):{0:Ra}NAME*{0:cos}NAME({0:t}NAME)+{0:Re}NAME({0:Ca}NAME) .EQN 0 25 3976 0 0 {0:yc}NAME({0:t}NAME):{0:Ra}NAME*{0:sin}NAME({0:t}NAME)+{0:Im}NAME({0:Ca}NAME) .EQN 1 -25 3977 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:yc}NAME({0:t}NAME)@1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME), {0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xc}NAME({0:t}NAME) 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 2 1 0 0 1 1 NO-TRACE-STRING 0 4 0 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 2 2 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 33 29 12 0 2 .TXT 91 -2 3158 0 0 Cg a69.000000,69.000000,45 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul 5- SUMMARY AND TERMINATION VALUES CALCULATION}} .TXT 4 0 3189 0 0 Cg a73.000000,73.000000,22 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul Computed data summary:}} .TXT 3 0 3166 0 0 Cg a73.000000,73.000000,46 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard (1) Stability - {\cf2 Device is potentially unstable}} .EQN 0 38 3165 0 0 {0:K}NAME={0}?_n_u_l_l_ .EQN 0 15 3164 0 0 {0:\m}NAME={0}?_n_u_l_l_ .TXT 3 -53 3169 0 0 Cg a73.000000,73.000000,45 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard (2) Max gain - {\cf2 Max stable gain achievable is:}} .EQN 0 38 3170 0 0 {0:MSG}NAME={0}?_n_u_l_l_ .EQN 0 15 3171 0 0 {0:MSGdB}NAME={0}?_n_u_l_l_ .TXT 3 -53 3172 0 0 Cg a73.000000,73.000000,55 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard (3) Noise - {\cf2 design will be optimized for minimum noise:}} .EQN 0 47 3175 0 0 {0:NFdB}NAME={0}?_n_u_l_l_ .TXT 3 -47 3178 0 0 Cg a73.000000,73.000000,39 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard (4) Available Gain - {\cf2 Available gain is:}} .EQN 0 38 3180 0 0 {0:GA}NAME={0}?_n_u_l_l_ .EQN 0 15 3181 0 0 {0:GAdB}NAME={0}?_n_u_l_l_ .TXT 4 -53 3190 0 0 Cg a73.000000,73.000000,98 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0; \red255\green0\blue255;\red128\green128\blue0;\red0\green0\blue0;\red0 \green128\blue128;}{\fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20 \b \pard {\ul Smith Chart circles summary:}\par {\cf2 red=input stability} , {\cf3 magenta=output stability}{\cf4 , brown=noise}{\cf5 , }{\cf6 cyan=gain} } .EQN 4 0 3199 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:ya}NAME({0:t}NAME),{0:yb}NAME({0:t}NAME),{0:yn}NAME({0:t}NAME),{0:yc}NAME({0:t}NAME)@1&-1&( _n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME),{0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xa}NAME({0:t}NAME),{0:xb}NAME({0:t}NAME),{0:xn}NAME({0:t}NAME),{0:xc}NAME({0:t}NAME) 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 2 1 0 0 1 1 NO-TRACE-STRING 5 1 3 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 44 38 12 0 2 .TXT 46 0 3606 0 0 Cg a73.000000,73.000000,50 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Computing input and output termination impedances:} .TXT 4 0 3246 0 0 Cg a73.000000,73.000000,25 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard {\f1 G}source={\f1 G}opt value was :} .EQN 0 23 3607 0 0 {0:\Gs}NAME={0}?_n_u_l_l_ .TXT 6 -23 3615 0 0 Cg a68.000000,68.000000,42 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard Zsource normalized at 50 {\f1 W} and{\cf2 Zsource is:}} .EQN 4 0 3616 0 0 {0:Zsourcenorm50}NAME:({0:\Gs}NAME+1)/(1-{0:\Gs}NAME) .EQN 0 31 3617 0 0 {0:Zsourcenorm50}NAME={0}?_n_u_l_l_ .EQN 4 -31 3618 0 0 {0:Zsource}NAME:{0:Zsourcenorm50}NAME*50 .EQN 0 31 3619 0 0 {0:Zsource}NAME={0}?_n_u_l_l_ .TXT 6 -31 3620 0 0 Cg a73.000000,73.000000,36 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard the corresponding needed {\f1 G}load was: } .EQN 0 33 3621 0 0 {0:\Gload}NAME={0}?_n_u_l_l_ .TXT 4 -33 3622 0 0 Cg a68.000000,68.000000,38 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard Zload normalized at 50 {\f1 W} and {\cf2 Zload is:}} .EQN 4 0 3623 0 0 {0:Zloadnorm50}NAME:({0:\Gload}NAME+1)/(1-{0:\Gload}NAME) .EQN 0 31 3624 0 0 {0:Zloadnorm50}NAME={0}?_n_u_l_l_ .EQN 4 -31 3625 0 0 {0:Zload}NAME:{0:Zloadnorm50}NAME*50 .EQN 0 31 3626 0 0 {0:Zload}NAME={0}?_n_u_l_l_ .TXT 6 -31 3325 0 0 Cg a73.000000,73.000000,197 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard The needed Zload and Zsource are then located on the chart (respectively magenta and red boxes) verifying that they are outside the output stability circle (notice that Zsource matches {\f1 G}opt point):} .EQN 7 2 3984 0 0 {0:Zl_x}NAME:{0:Re}NAME({0:\Gload}NAME) .EQN 0 15 3985 0 0 {0:Zl_y}NAME:{0:Im}NAME({0:\Gload}NAME) .EQN 0 19 3986 0 0 {0:Zs_x}NAME:{0:Re}NAME({0:\Gs}NAME) .EQN 0 15 3987 0 0 {0:Zs_y}NAME:{0:Im}NAME({0:\Gs}NAME) .EQN 1 -51 3989 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:ya}NAME({0:t}NAME),{0:yb}NAME({0:t}NAME),{0:yn}NAME({0:t}NAME),{0:yc}NAME({0:t}NAME), {0:Zl_y}NAME,{0:Zs_y}NAME@1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME),{0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xa}NAME({0:t}NAME),{0:xb}NAME({0:t}NAME),{0:xn}NAME({0:t}NAME), {0:xc}NAME({0:t}NAME),{0:Zl_x}NAME,{0:Zs_x}NAME 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 2 1 0 0 1 1 NO-TRACE-STRING 5 1 3 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 3 1 3 0 2 2 NO-TRACE-STRING 3 1 0 0 2 2 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 50 45 12 0 2 .TXT 50 0 3991 0 0 Cg a73.000000,73.000000,423 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard While Zsource impedance location on the chart is outside the input stability circle and it meets the 20dB gain and 0.29dB noise circles, it is clear that the corresponding {\cf2 Zload value falls inside the output unstable area}. Therefore a different value of Zsource must be selected.\par \pard {\cf2\ul So}{\ul }{\cf2 \f1\ul G}{\cf2\ul source needs to be changed and chosen to have a stable amplifier}{\ul }{\cf2\ul and the best possible noise performance, }{\ul thus reducing the amplifier gain}.} .TXT 15 0 3795 0 0 Cg a69.000000,69.000000,32 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\ul 6- TERMINATION VALUES ADJUSTMENT}} .TXT 4 0 3796 0 0 Cg a73.000000,73.000000,261 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard {\ul Step 6 lets select a new }{\f1\ul G}{\ul source value (repeating step 4 and 5 )}{\ul .}\par First a new gain circle is plotted (a lower gain improves stability) then a new {\f1 G}source value is selected on that circle and finally the terminations are computed and verified on the chart again.} .TXT 11 0 3862 0 0 Cg a72.000000,72.000000,35 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red0\green128\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard {\cf2 Enter here a new GA value to plot:} } .EQN 0 30 4041 0 0 {0:GAdB}NAME:16.9 .EQN 0 13 4042 0 0 {0:GA}NAME:(10)^(({0:GAdB}NAME)/(10)) .EQN 2 -13 4043 0 0 {0:GA}NAME={0}?_n_u_l_l_ .TXT 2 -30 3721 0 0 Cg a73.000000,73.000000,35 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Radius of available gain circle is:} .EQN 10 6 3722 0 0 {0:Ra}NAME:(((1-2*{0:K}NAME*|({0:S12}NAME*{0:S21}NAME)*({0:GA}NAME)/(((|({0:S21}NAME)))^(2))+((|({0:S12}NAME*{0:S21}NAME)))^(2)*((({0:GA}NAME)/(((|({0:S21}NAME)))^(2))))^(2)))^((1)/(2)))/(|(1+({0:GA}NAME)/(((|({0:S21}NAME)))^(2))*(((|({0:S11}NAME)))^(2)-( (|({0:\D}NAME)))^(2)))) .EQN 0 57 3723 0 0 {0:Ra}NAME={0}?_n_u_l_l_ .TXT 8 -63 3711 0 0 Cg a73.000000,73.000000,18 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard and the center is:} .EQN 8 6 3712 0 0 {0:Ca}NAME:(({0:GA}NAME)/(((|({0:S21}NAME)))^(2))*(({0:S11}NAME-{0:\D}NAME*({0:S22}NAME)]))])/(1+({0:GA}NAME)/(((|({0:S21}NAME)))^(2))*(((|({0:S11}NAME)))^(2)-((|({0:\D}NAME)))^(2))) .EQN 0 51 3713 0 0 {0:Ca}NAME={0}?_n_u_l_l_ .TXT 9 -57 3732 0 0 Cg a69.000000,69.000000,74 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Plotting the new selected available gain circle (cyan) on the Smith Chart:} .EQN 3 3 3735 0 0 {0:xc}NAME({0:t}NAME):{0:Ra}NAME*{0:cos}NAME({0:t}NAME)+{0:Re}NAME({0:Ca}NAME) .EQN 0 27 3733 0 0 {0:yc}NAME({0:t}NAME):{0:Ra}NAME*{0:sin}NAME({0:t}NAME)+{0:Im}NAME({0:Ca}NAME) .EQN 1 -30 3813 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:ya}NAME({0:t}NAME),{0:yb}NAME({0:t}NAME),{0:yn}NAME({0:t}NAME),{0:yc}NAME({0:t}NAME)@1&-1&( _n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME),{0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xa}NAME({0:t}NAME),{0:xb}NAME({0:t}NAME),{0:xn}NAME({0:t}NAME),{0:xc}NAME({0:t}NAME) 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 2 1 0 0 1 1 NO-TRACE-STRING 5 1 3 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 0 3 3 0 1 1 NO-TRACE-STRING 0 4 4 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 44 38 12 0 2 .TXT 45 0 4046 0 0 Cg a73.000000,73.000000,181 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard From the chart select the new {\cf2\f1 G}{\cf2 source value, locating it on the new gain circle as close as possible to NFmin impedance circle} ({\f1 G}source is espressed in polar form for convenience): } .EQN 5 0 4047 0 0 {0:\Gsmag}NAME:0.88 .EQN 0 14 4048 0 0 {0:\Gsang}NAME:29 .EQN 3 -14 4057 0 0 {0:\Gsmag}NAME:0.84 .EQN 0 14 4058 0 0 {0:\Gsang}NAME:33 .TXT 4 -14 4027 0 0 Cg a65.000000,65.000000,44 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Converting gamma source to rectangular form:} .EQN 3 0 4028 0 0 {0:\GsRe}NAME:{0:\Gsmag}NAME*{0:cos}NAME({0:\Gsang}NAME*{0:deg}NAME) .EQN 3 0 4029 0 0 {0:\Gsim}NAME:{0:\Gsmag}NAME*{0:sin}NAME({0:\Gsang}NAME*{0:deg}NAME) .EQN 0 29 4030 0 0 {0:\Gs}NAME:{0:\GsRe}NAME+{0:\Gsim}NAME*1j .EQN 0 26 4031 0 0 {0:\Gs}NAME={0}?_n_u_l_l_ .TXT 6 -55 4032 0 0 Cg a73.000000,73.000000,58 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}}\plain\cf1\fs20\b \pard Computing the new input and output termination impedances:} .TXT 3 0 4033 0 0 Cg a68.000000,68.000000,42 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard Zsource normalized at 50 {\f1 W} and{\cf2 }{\cf2\ul Zsource is}{\cf2 :}} .EQN 4 0 4034 0 0 {0:Zsourcenorm50}NAME:({0:\Gs}NAME+1)/(1-{0:\Gs}NAME) .EQN 0 31 4035 0 0 {0:Zsourcenorm50}NAME={0}?_n_u_l_l_ .EQN 4 -31 4036 0 0 {0:Zsource}NAME:{0:Zsourcenorm50}NAME*50 .EQN 0 31 4037 0 0 {0:Zsource}NAME={0}?_n_u_l_l_ .TXT 11 -31 4001 0 0 Cg a73.000000,73.000000,174 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2 With the new }{\cf2\f1 G}{\cf2 s}{\cf2 ource value}{ \cf2 the corresponding }{\cf2\f1 G}{\cf2 o}{\cf2 ut must be recalculated}{ \cf2 }(reflection coefficient seen at the network output with the input attached to new Zsource impedance): } .EQN 6 0 4002 0 0 {0:\Gout}NAME:{0:S22}NAME+{0:S12}NAME*{0:S21}NAME*({0:\Gs}NAME)/((1-{0:S11}NAME*{0:\Gs}NAME)) .EQN 0 47 4003 0 0 {0:\Gout}NAME={0}?_n_u_l_l_ .TXT 5 -47 4004 0 0 Cg a73.000000,73.000000,31 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;}{\fonttbl{\f0 \fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain\cf1\fs20\b \pard as a consequence new {\f1 G}load is: } .EQN 0 28 4005 0 0 {0:\Gload}NAME:({0:\Gout}NAME)] .EQN 0 19 4006 0 0 {0:\Gload}NAME={0}?_n_u_l_l_ .TXT 4 -47 4007 0 0 Cg a68.000000,68.000000,38 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard Zload normalized at 50 {\f1 W} and {\cf2\ul Zload is}{ \cf2 :}} .EQN 4 0 4008 0 0 {0:Zloadnorm50}NAME:({0:\Gload}NAME+1)/(1-{0:\Gload}NAME) .EQN 0 31 4009 0 0 {0:Zloadnorm50}NAME={0}?_n_u_l_l_ .EQN 4 -31 4010 0 0 {0:Zload}NAME:{0:Zloadnorm50}NAME*50 .EQN 0 31 4011 0 0 {0:Zload}NAME={0}?_n_u_l_l_ .TXT 6 -31 3994 0 0 Cg a73.000000,73.000000,239 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2 Finally Zload and Zsource impedances are verified again on the chart} (respectively magenta and red boxes) checking that they are outside the output stability circle ({\ul if not step 6 must be repeated with different }{\f1\ul G}{\ul source and/or gain value}).} .EQN 7 2 3995 0 0 {0:Zl_x}NAME:{0:Re}NAME({0:\Gload}NAME) .EQN 0 15 3996 0 0 {0:Zl_y}NAME:{0:Im}NAME({0:\Gload}NAME) .EQN 0 19 3997 0 0 {0:Zs_x}NAME:{0:Re}NAME({0:\Gs}NAME) .EQN 0 15 3998 0 0 {0:Zs_y}NAME:{0:Im}NAME({0:\Gs}NAME) .EQN 1 -51 3999 0 0 1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:y0}NAME({0:t}NAME),{0:y2}NAME({0:t}NAME),{0:y6}NAME({0:t}NAME),{0:y7}NAME({0:t}NAME),{0:y10}NAME({0:t}NAME),{0:y11}NAME({0:t}NAME),{0:ya}NAME({0:t}NAME),{0:yb}NAME({0:t}NAME),{0:yn}NAME({0:t}NAME),{0:yc}NAME({0:t}NAME), {0:Zl_y}NAME,{0:Zs_y}NAME@1&-1&(_n_u_l_l_&_n_u_l_l_)&{0:x0}NAME({0:t}NAME),{0:x2}NAME({0:t}NAME),{0:x6}NAME({0:t}NAME),{0:x7}NAME({0:t}NAME),{0:x10}NAME({0:t}NAME),{0:x11}NAME({0:t}NAME),{0:xa}NAME({0:t}NAME),{0:xb}NAME({0:t}NAME),{0:xn}NAME({0:t}NAME), {0:xc}NAME({0:t}NAME),{0:Zl_x}NAME,{0:Zs_x}NAME 0 0 0 0 0 2 0 1 1 0 0 0 0 0 2 0 1 1 0 1 1 0 1 1 NO-TRACE-STRING 0 1 1 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 0 1 2 0 1 1 NO-TRACE-STRING 2 1 0 0 1 1 NO-TRACE-STRING 5 1 3 0 1 1 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 1 4 0 1 1 NO-TRACE-STRING 3 1 3 0 2 2 NO-TRACE-STRING 3 1 0 0 2 2 NO-TRACE-STRING 0 1 5 0 1 1 NO-TRACE-STRING 0 2 6 0 1 1 NO-TRACE-STRING 0 3 0 0 1 1 NO-TRACE-STRING 0 4 1 0 1 1 NO-TRACE-STRING 1 1 2 50 45 12 0 2 .TXT 51 0 4000 0 0 Cg a73.000000,73.000000,131 {\rtf\ansi \deff0{\colortbl;\red10\green36\blue106;\red255\green0\blue0;}{ \fonttbl{\f0\fcharset0\fnil Arial;}{\f1\fcharset2\fnil Symbol;}}\plain \cf1\fs20\b \pard {\cf2\ul Last thing to do is to adapt the found Zsource and Zload terminations to the needed impedance (usually 50}{ \cf2\f1\ul W}{\cf2\ul ) via a matching network.}}